If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+11x-494=0
a = 1; b = 11; c = -494;
Δ = b2-4ac
Δ = 112-4·1·(-494)
Δ = 2097
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2097}=\sqrt{9*233}=\sqrt{9}*\sqrt{233}=3\sqrt{233}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3\sqrt{233}}{2*1}=\frac{-11-3\sqrt{233}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3\sqrt{233}}{2*1}=\frac{-11+3\sqrt{233}}{2} $
| y=3/7-7 | | 2x+6=5x-29 | | 7.8-4.9-5.4m=2.3 | | 79+30x=350+30x | | 9^-2y=7 | | -6(4x+3)=-24x-18 | | 6.25=p(0.05*0.25) | | 6+4/5k=9/10k | | 6.25=p(0.05)(0.25) | | 20.8=x+7/9X | | 4(a-2)=8a-(4a-8 | | 3.2r+0.47=1.79r= | | 5/9x0/9=0/9 | | x2+2x-7=13+x | | 6x+7x=100 | | 4(4s+10)=136 | | 15x-3=-10 | | y+y+y*0+2=0 | | y+y+y=y+y | | 10y=72+2y | | 5x+x^2=54 | | 6(4x-2)=40 | | x-12=3x-8 | | 8(5x-2)=42 | | 8(5x-2)=55 | | 8(5x-2)=50 | | 8(5x-2)=35 | | 8(5x-2)=25 | | 2x+(−10+4x)+13=51 | | 8(5x-2)=40 | | 8(5x-2)=30 | | -62=8v-12v |